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RESPONSE  AND  OPTIMIZATION OF AN  ISOLATION 
SYSTEM  WITH  RELAXATION TYPE  DAMPING 

by 
Thomas F. Derby  and  Peter  C.  Calcaterra 

Barry  Controls 
Division  of  Barry  Wright  Corporation 

Watertown,  Massachusetts 

SUMMARY 

The scope  of  the  investigation  reported  herein  deals  with  the 
effect  of  damping  on  the  free  vibration,  impulse,  random  vibration, 
and  shock  pulse  response  of  mechanical  isolation  systems  which 
incorporate  elastically  coupled  damping  elements. The response 
quantities  considered  are  the  acceleration  of  the  mass  and  the 
deflection  of  the  isolator,  with  the  acceleration  of  the  base  as 
the  input. 

The  nature  of  the  free  vibration  is  investigated  first  by  con- 
sidering  the  roots  of  the  characteristic  equation. The regions in 
which  the  system  is  underdamped,  critically  damped,  and  overdamped 
are  established  as  functions  of  dimensionless  combinations of  the 
system  parameters. 

The impulse  response  is  considered  next.  The  excitation  in 
this  case  is  an  acceleration  of  the  base  equivalent  to  an  impulse 
of  area V (i.e., a velocity  step  of  magnitude V). Computer  solu- 
tions  are  obtained  for  the  peak  values  of  the  acceleration  and  dis- 
placement. The  results  are  presented  graphically  in  dimensionless 
form  as  functions  of  dimensionless  parameters  of  the  system.  The 
parameters  for  this  system  are  optimized  according  to a shock  iso- 
lator  optimization  criteria  which  states:  "For a given  input  and 
maximum  deflection  of  the  isolator,  find  the  isolator  parameters 
that  will  minimize  the  peak  acceleration of the  isolated  mass." 
Trade-off  limit  curves  (i.e., a plot  of  the  minimum  acceleration 
expressed  in  g's  versus a dimensionless  parameter  containing  the 
deflection  of  the  isolator  and  the  level of the  input)  are  also 
presented  and  compared  to  the  best  possible  trade-off  limit  curve 
independent  of  the  isolator  configuration. 

The  response  to  random  vibration  is  then  investigated.  The 
random  excitation  is  taken  to  be  white  noise  acceleration  of  the, 
base. The response  quantities  are  the RMS values of the  accelera- 
tion of the  mass  and  the  deflection  of  the  isolator.  Results  are 
presented  graphically,  and  the  system  is  optimized  in  much  the 
same  manner  as  for  the  impulse  response. 

Finally,  the  responses  to  various shock pulses  are  presented 
and compared to the  impulse  responses. 



INTRODUCTION 

A recent  study  of  the  vibration  transmission  and  resonance 
characteristics  of  vibration  isolation  systems  [Ref. 11 has  shown 
that  the  mathematical  models  employing  directly  coupled  damping 
elements  most  frequently  used  by  vibration  engineers  provide  a 
poor  representation  of  many  of  the  dynamic  response  characteristics 
of  mechanical  systems  as  observed  in  practice.  Mathematical  models 
employing  elastically  coupled  damping  elements  (also  referred  to  as 
relaxation  type  damping)  were  shown  to  provide  a  substantially  im- 
proved  representation. 

A literature  search  was  conducted  to  find  material  on  the 
response  of  an  isolation  system  using  relaxation  type  damping  to 
random  vibration  and  shock  excitation.  Reference 2 is  one  of  the 
first  papers  about  this  system.  It  gives  the  equation  of  motion 
but  does  not  give  any  responses  to  specific  inputs.  Reference 3 
is  a  more  detailed  mathematical  description of this  system  and 
gives  the  impulse  response  for  various  values  of  the  parameters. 
Reference 4 uses  this  system  to  model  an  isolation  system  using  an 
elastomer  as  the  resilient  element  and  concludes  that  this  system 
is  a  better  model  than  the  standard  model  which  uses  a  spring  and 
damper  in  parallel.  Reference 5 presents  some  optimum  values  of 
damping  for  this  system  and  also  presents  some  time  history  re- 
sponses  to  two  types  of  shock  input.  Reference 6 compares  the 
response  of  the  relaxation  system  to  the  standard  isolation  system 
(i.e.,  spring  and  damper  in  parallel)  for  two  particular  shock  input 

This  report  presents  analyses  and  graphical  results  for  free 
vibration,  impulse  response,  response  to  random  vibration,  and 
response  to  various  pulse  shapes  for  an  isolation  system  using 
relaxation  type  damping.  Optimum  values  of  the  system  parameters 
are  defined  for  each  case.  Recommendations  are  made  for  selecting 
values  of  parameters  other  than  those  op-timized  according  to  the 
chosen  performance  criteria. 
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D E F I N I T I O N   O F  SYMBOLS 

There  are  no  dimensions  given in the  definitions  since  the 
quantities  are  always  used  as  dimensionless  ratios.  Quantities 
that  are  defined in the  text  and  used  only  immediately  afterward 
are  not  defined  here. 
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k , k' 
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tl 
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wo 

absolute  displacement of the  foundation  (Figure 1) 

maximum  acceleration of the  foundation 

viscous  damping  coefficients  (Figure 1) 

force  transmitted  to  the  foundation  or  magnitude 
of a constant  force  device 

frequency 

wO/2.rr = undamped  natural  frequency 

expected  frequency 

acceleration of gravity 

spring  constants  (Figure 1) 

Laplace  transform  operator 

mass  (Figure 1) 

stiffness  ratio  (Figure 1) 

force  applied  to  mass  (Figure 1) 

Laplace  transform  variable 

l/fo = 2.rr/wo = undamped  natural  period 

time 

time  duration  of  pulse 

magnitude  of  velocity  step  (area  of  acceleration 
impulse) 

magnitude  of  acceleration  spectral  density 
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= absolute  displacement  of  mass  (Figure 1) I 
= maximum  acceleration  of  the  mass 

= s/wo = nondimensional  Laplace  transform  variable 

= real  roots  or  real  and  imaginary  parts  of-complex 
roots  (Equations 9 and 13) 

- - x - a = deflection  of  the  isolator 

= maximum  deflection  of  the  isolator 

= c/2& = viscous  damping  ratio 

= optimum  damping  ratio  to  minimize  either  mass 
acceleration  or  isolation  deflection 

= optimum  damping  ratio  to  minimize  parameters 
6oxo x 3  6RMs RMS 

% V2 
or 

= w o t  = nondimensional  time 

= w o t l  = nondimensional  time  duration of pulse 

= = undamped  natural  frequency 



EQUATIONS OF MOTION 

The  equations  of  motion  for  the  vibration  isolation  systems 
with  elastically coupled.viscous damping  shown  in  Figure  l(a)  and 
1 (b)  respectively  are 

pg) + mz + c ( N i 1 ) i ; + k 6 = P + -  Nk c -  P 

C [- N + 1  ' ] x + mii + c' ( N + l  ) + kt(. y 1) 6 = P +[(N +ck)k,]6 (2) 

where 6 = x-a. 

The form  of  the  differential  equation of motion  is  the  same 
for  these  two  systems.-  Therefore  they  can  be  made  dynamically 
equivalent  by  equating  coefficients  of  like  terms,  namely 

=(N y 1) k' 

c =(N y J2C1 
Because  of  this  equivalence,  only  the  unprimed  system  shown  in 
Figure 1 (a)  and  described  by  Equation (1) will  be  considered. 
The  results  are  presented  in  terms  of  the  undamped  natural  fre- 
quency w = , the  viscous  damping  ratio 5 = c/2&, and 
the  stiffness  ratio N. 

0 

Two  types  of  excitation  are  considered: (1) acceleration  of 
the  base a; and ( 2 )  force  on  the  mass P.  When  the  excitation 
is  the  acceleration of the  base,  the  system  response  is  charac- 
terized  by  acceleration  of  the  mass x and  the  relative  deflec- 
tion  across  the  isolator 6. Taking  the  Laplace  transform  of 
Equation (11, with  P = P = 0, the  following  transfer  functions 

I 
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are  obtained 

When  the  excitation  is  a  force  on  the  mass,  the  system 
response  is  characterized  by  the  force F transmitted  to  the 
base  through  the  isolator  and  the  deflection  of  the  isolator x. 
The  following  equivalent  relations  between  transfer  functions 
were  obtained: 

Therefore,  only  the  responses  to  an  acceleration  of  the  base  need 
be  considered,  and  the  results  obtained  from  these  analyses  will 
be  applicable  to  the  responses  to  a  force  on  the  mass. 
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FFTZE VIBRATION 

The c h a r a c t e r i s t i c   e q u a t i o n   f o r   t h i s   s y s t e m  i s  obtained  by 
se t t i ng   t he   denomina to r   i n   Equa t ions  (5)  and ( 6 )  e q u a l   t o   z e r o .  
The roots   o f   the   charac te r i s t ic   equa t ion   de te rmine   the   form of 
t h e  t i m e  h i s t o r y   o f  free v i b r a t i o n .  The t i m e  h i s t o r y  i s  o s c i l -  
l a t o r y   i f   t h e r e  i s  one real  root   and a p a i r  of  complex  conjugate 
roots ,   and  i s  n o n - o s c i l l a t o r y   i f   t h e r e  are t h r e e  real  r o o t s .   I f  
a t  least two o f   t h e   t h r e e  real r o o t s  are e q u a l ,   t h e  t i m e  h i s t o r y  
i s  on t h e   b o r d e r   l i n e   b e t w e e n   b e i n g   o s c i l l a t o r y  (underdamped)  and 
non-osc i l l a to ry  (overdamped)  and the   sys tem i s  said t o  be criti- 
c a l l y  damped.  The r o o t s   o f   t h e   c h a r a c t e r i s i t i c   e q u a t i o n  are a l l  

p r o p o r t i o n a l   t o   t h e  undamped na tura l   f requency  wo ( i .e . ,  if t h e  
c h a r a c t e r i s t i c   e q u a t i o n  i s  d iv ided  by w o 9  t h e   r o o t s   o f  s / w o  can 
be  determined as func t ions  of.5 and N ) .  T h e r e f o r e ,   f o r  a given 
va lue  of N ,  a value  of  5 t h a t   c a u s e s   t h e   s y s t e m   t o   b e   c r i t i c a l l y  
damped w i l l  be   des igna ted  as cdr.  Values of S c r  are found  by 
equa t ing   t he   mod i f i ed   cha rac t e r i s t i c   po lynomia l  t o  a s o l u t i o n  
con ta in ing  a t  least t w o  e q u a l   r o o t s :  

Expanding t h e   r i g h t  hand s ide   o f   Equat ion  ( 9 )  and s e t t i n g   t h e  
c o e f f i c i e n t s  of s / w o  equa l  t o  those  on t h e   l e f t  h a n d   s i d e   r e s u l t s  
i n  : 
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For N < 8 ,  there i s  no   va lue   o f   tha t  w i l l  s a t i s f y  Equa- 

t i o n s  (10) and (11) and   t he re fo re ,   t he  t i m e  h i s t o r y   o f   f r e e   v i b r a -  
t i o n  i s  a lways   osc i l la tory .   For  N = 8 ,  there i s  a t r i p l e   r o o t   o f  
t h e  c h a r a c t e r i s t i c   e q u a t i o n  (i .e. , 01 = (3 = f l )  and  there  i s  only 
one  value of t h e  damping r a t i o ,  cCr = 4 / 3 n ,  t h a t   s a t i s f i e s  
Equations ( 1 0 )  and (11). These  values of Scr are displayed  graphi-  
c a l l y   i n   F i g u r e  2.  T o  m o r e  f u l l y   i l l u s t r a t e   t h e   n a t u r e  of t h e   r o o t s  
o f   t h e   c h a r a c t e r i s t i c   e q u a t i o n ,   t h e   r o o t   l o c u s   p l o t s  are shown i n  
Figures  3,  4, and 5 fo r   va lues   o f  N e q u a l   t o  3, 8, and 15, re- 
spec t ive ly .  From t h e   r o o t   l o c u s   p l o t s  it i s  e a s i l y   s e e n   t h a t   t h e  
d iv id ing   l ine   be tween  osc i l la tory   and   non-osc i l la tory   mot ion   oc-  
c u r s  when t h e r e  are a t  least two.equa1 real  r o o t s .  The p a i r   o f  
complex  conjugate  roots must reach t h e  rea l  a x i s  a t  t h e  s a m e  
p o i n t ,  as < i s  increased  f r o m  zero,   and  must  leave t h e  real  a x i s  
a t  t he  same p o i n t ,   a s  5 i s  f u r t h e r   i n c r e a s e d .  

The f r e e   v i b r a t i o n  t i m e  h i s t o r i e s ,  when t h e   i n i t i a l   c o n d i t i o n  
i s  a negat ive   ve loc i ty   o f   the  mass of  magnitude V ,  are i d e n t i c a l  
t o  t h e  t i m e  h i s to ry   r e sponses  t o  an   acce le ra t ion   o f   t he   base   i n  
t h e  form  of-  an  impulse  of area V. These  responses w i l l  be  consi- 
d e r e d   i n  t he  n e x t   s e c t i o n  of t h e   r e p o r t .  

8 



I M P U L S E   m S P O N S E  

The e x c i t a t i o n   i n   t h i s   c a s e  i s  an   acce lera t ion   of   the   base  
equ iva len t   t o   an   impu l se   o f  area V ( i . e . ,  a v e l o c i t y   s t e p  of 
magnitude V o r  a displacement ramp o f   s lope  V). The Laplace 
t r ans fo rm  o f   base   acce le ra t ion  a i s  

and the   acce le ra t ion   and   d i sp lacement   responses  are obta ined  by 
t ak ing   t he   i nve r se   Lap lace   t r ans fo rm of Equations ( 5 )  and (61, 
r e spec t ive ly ,   and   mu l t ip ly ing  by V. The r o o t s  of t h e   c h a r a c t e r i s -  
t i c  equat ion  are found by l e t t i n g  y = s / w o  a n d   s o l v i n g   f o r   t h e  
r o o t s   o f :  

Defining a nondimensional t i m e  as 

T = w t  
0 

(14) 

and  using  the  roots   obtained  f rom  Equat ion (13), Equations ( 5 )  

and ( 6 )  can   be   inver ted   to   g ive   the   impulse   responses .   These  are 
p resen ted   i n   Tab le  I. I n   o r d e r   t o   s o l v e   f o r   t h e  peak  values  of 
the  nondimensional  impulse  responses Q i t  i s  n o t   n e c e s s a r y   t o  
spec i fy   an  undamped na tu ra l   f r equency  w o  b u t   j u s t  a s t i f f n e s s  
r a t i o  N and a v iscous  damping r a t i o  <. 
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ROOTS 

y1 = -a + iB 
y2 = -a - if3 
Y 3  = -Y 

y1 = -a 

y2 = -6 

Y3 = -Y 

y1 = -a 

y2 = -a 

Y 3  = -Y 

y1 = -a 

y2 = -a 

y3 = -a 

IMPULSE RESPONSE 

Q = (AT-C) e-aT+Ce-YT 

TABLE I 

Q I  P A B 
I 

I I I 

1 I I 

I I I 
I I I 

I I I 

N+ 1 

I I I 

1 

C 



For  the s p e c i a l  case of N = 00 ( i .e . ,  convent ia l   spr ing   and  
damper i n   p a r a l l e l ) ,   t h e   v i s c o u s  damping r a t i o  5 i s  a l s o   t h e  frac- 
t i o n  of c r i t i ca l  damping  and the impulse   response   so lu t ions  are 
s o m e w h a t  s imp l i f i ed  as shown b e l o w .  

b w , =  
V 

' ~ : e  --r 
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r 1 

Because of t h e  importance of the peak  values of a c c e l e r a t i o n  
and  displacement,   the maximum values  of the  dimensionless  accelera- 
t i o n  x,/woV and the  dimensionless   displacement  6ouo/V w e r e  obtained 
f o r  v a r i o u s   v a l u e s   o f   t h e   s t i f f n e s s   r a t i o  N and the  viscous dam- 
p i n g   r a t i o  <. These   r e su l t s  are d i sp layed   g raph ica l ly   i n   F igu res  
6 through 9.  T h e  curves i n   F i g u r e  7 ,  each fox a p a r t i c u l a r   v a l u e  
o f   s t i f f n e s s   r a t i o  N ,  a l l  have a minimum a t  some va lue  of 5 .  

These va lues  of < w i l l  be   designated as c m  and are shown p l o t t e d  
versus  t h e  s t i f f n e s s   r a t i o  N i n   F i g u r e  1 0 .  T h e  s ign i f i cance   o f  

c m  
r a t i o  N ,  t h e  damping c determined  from cm w i l l  minimize t h e  peak 
a c c e l e r a t i o n  2 . In   F igu re  8 it can be observed   tha t  for  any 
s t i f f n e s s   r a t i o  N ,  the h igher  t h e  va lue  of the   v i scous  damping 
r a t i o  <, t h e  lower i s  the   va lue  of t h e  dimensionless  displacement 
Gowo/V,  and as < approaches   i n f in i ty ,  d,uo/V approaches 1/ JNri?i. 

i s  t h a t   f o r   g i v e n   v a l u e s  of mass m ,  s t i f f n e s s  k ,  and s t i f f n e s s  

0 

Optimization of Parameters 

The parameters f o r  this system have been  optimized  according 
t o  t h e  shock   i so l a to r   op t imiza t ion  c r i te r ia  which states: "For a 
given  input  and maximum d e f l e c t i o n  of t h e  i s o l a t o r ,   f i n d  the iso- 
l a t o r   p a r a m e t e r s  t h a t  w i l l  minimize t h e  peak   acce lera t ion  of t h e  
i s o l a t e d  m a s s " .  I n   g e n e r a l ,   s o l u t i o n s   t o  t h i s  problem are d i f f i -  
c u l t  t o  ob ta in   because   t he   expres s ions   fo r   t he  maximum values   can 
no t  be wr i t ten   ana ly t ica l ly   and   numer ica l   search   techniques   mus t  
be employed.  However, fo r  t h e  system  under   considerat ion,  t h e  

in f luence   o f   t he  three parameters w o ,  <, and N on t h e  opt-imum 
impulse  response  can be e f f e c t i v e l y  separated. The undamped 
na tura l   f requency  w o  can be .eliminated f r o m  t he  search procedure,  
s i n c e   l e t t i n g  

1 3  



2 
0 - =  

WOv 
Q 1  

and 

6oWo 
” 

V - Q 2  

r e s u l t s   i n  

6 o x o  
- =  
V2 Q 1  Q z  

Figure 11 shows a p lo t   o f   Equat ion   (23)   ob ta ined  as the  

product   of   values   of  jio/w0V from  Figure 6 and  values  of 6owo/V 
from  Figure 8 .  T h e  minimum value  of  60%o/V2 r e p r e s e n t s  t h e  mini- 
mum va lue   o f   t he   acce le ra t ion  So, given t h e  i n p u t  V and t h e   i s o l a -  
t o r   d e f l e c t i o n  It can  be  seen  f rom  Figure 11 t h a t  t h e  minimum 
va lue  of 6oxo/V2 i s  0.52  and t h e   v a l u e s  of the   pa rame te r s   a r e  N=a 
and <=0.4. Since there may be   o the r  c r i te r ia  that  r e q u i r e  a 
f i n i t e   v a l u e   o f  N ,  it w a s  dec ided   to   keep  N as a given  parameter 
and then   op t imize  w a n d . <   f o r   c e r t a i n   v a l u e s   o f  N. 

0 

The va lues  of 5 t h a t  minimize the c u r v e s   i n   F i g u r e  11 are 
des igna ted  as t h e  optimum viscous  damping r a t i o  5 and are p l o t t e d  
i n   F i g u r e  1 2  v e r s u s   t h e   s t i f f n e s s   r a t i o  N.  Associated w i t h  each 
va lue  of < are va lues   o f  Qr_ and Q2 from  which t h e  optimum  un- 
damped na tura l   f requency  ( w o )  can be obtained  from  Equation (21 )  

o r  (22 )  f o r  a given  value  of V, and e i t h e r  a given maximum acce- 
l e r a t i o n  Go o r  a given maximum d i sp lacemen t   r e spec t ive ly .  The 

va lue  of Q2 cor re spond ing   t o  5 i s  des igna ted  as t h e  optimum 
frequency  parameter S 0 ( w , )  /V and i s  p l o t t e d   v e r s u s   t h e   s t i f f n e s s  
r a t i o  N i n   F i g u r e  13. The optimum d imens ion le s s   acce le ra t ion  Ko/g, 
w h e r e  g is the a c c e l e r a t i o n   o f   g r a v i t y ,  i s  p l o t t e d   v e r s u s  the  

OP 

OP 

OP 

OP 
OP 

13 



dimensionless  displacement  parameter  6og/V2  for  various  values 
of  the  stiffness  ratio N in  Figure 14. These  curves  are  called 
trade-off  limit  curves  since  they  determine  the  minimum  value  of 
peak  acceleration  that  can  be  achieved  given  the  maximum  relative 
displacement 6 o  and  the  level of the  velocity  shock V. 

Also plotted  in  Figure 1 4  is  a  curve  labeled  ''BEST  POSSIBLE." 
This  result  was  obtained  by  considering  the  response  of  an  isola- 
tion  system  using a constant  force  device  as  the  isolator.  From 
energy  considerations 

where  F  is  the  magnitude  of  the  constant  force.  The  maximum 
acceleration x. is  F/m so that  from  Equation (24) 

6 oito 
" 

V2 - 0.5 

A similar  result  was  obtained  in  Reference 7. 

The  value  of  6oxo/V2  is  equal  to 0.52 for  the  system  shown 
in  Figure  l(a)  with N = 03 and c = 0.4 and,  therefore,  is  only 
4 percent  worse  than  the  best  possible  solution.  However,  the 
system  with  the  spring  and  viscous  damper  will  return  to  its 
initial  position  which  could  be  an  advantage.  This  is  illustrated 
in  Figure 15 where  the  constant  force F was  chosen so that  the 
maximum  isolator  deflection  would  be  the  same  for  both  systems. 

i 

Design  Example 

The  following  design  example  illustrates  the  use of the  opti- 
mum  design  graphs. It  is  required  that  the  parameters N, c ,  and 
w o  which  will  minimize  the  maximum  relative  displacement  be  deter- 
mined,  given  that  the  maximum  allowable  acceleration  is 10 g ' s  

(3860 in/sec2)  and  the  input  is  a 100 in/sec  velocity  shock. 
Since  no  restrictions  are  placed  on  the  stiffness  ratio N, take 
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N = Q). From  Figure 12, = 0.4 and  from  Figure 13, 
b o  ( w  ) /V = 0.6. . From  Figure 14, with N = Q) and jlo/g = 10, 

the  dimensionless  displacement  parameter is 

OP 
0 OP 

ti 09 7 = 0.052 

so that  substituting  the  values  of V and g results  in 
b o  = 1.35 in.  Using  this  value  of b o  

(wo)  op = 44.4 rad/sec;  (fo)op = 7.07 Hz 

In  some  instances,  system  design  or  performance  requirements 
may  dictate  selection  of  finite  values of N (e.g.,  high  frequency 
vibration  isolation). In  that  case,  parameters  can  be  selected  to 
provide  the  best  response  to  impulse  (from  Figures 11 through 14) 
compatible  with  the  desired  vibration  isolation  performance  (from 
Reference 1). Of necessity,  this  selection  would  involve a trial 
and  error  procedure. 

i ... L . i 
[ .  
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RANDOM VIBRATION RESPONSE 

The  random e x c i t a t i o n   t o   b e   c o n s i d e r e d  i s  white   noise  accel- 
e r a t i o n   o f   t h e   b a s e .   T h i s   t y p e   o f   e x c i t a t i o n   h a s  a uniform  spec- 
t r a l  d e n s i t y  Wo which  can be expressed as mean square accelera- 

t i on   pe r   cyc le   pe r   s econd ,   ove r  a l l  frequencies  from f = 0 t o  
f = a [Ref. 8 ,  p.281. The responses   of^ i n t e r e s t  are t h e  accel- 
e r a t i o n   o f   t h e  m a s s  x a n d   t h e   r e l a t i v e   d e f l e c t i o n   a c r o s s   t h e  
i s o l a t o r  8.  The t r a n s f e r   f u n c t i o n s   f o r   t h e s e   q u a n t i t i e s  are 
given  by  Equations (5)  and ( 6 1 ,  r e spec t ive ly .  It  i s  w e l l  known 
t h a t   f o r  a l i n e a r   s y s t e m ,   t h e   s p e c t r a l   d e n s i t y  of the   response  i s  
equal  t o  t h e   s p e c t r a l   d e n s i t y  of t h e   i n p u t  times the   squa re   o f   t he  
magnitude  of  the  appropriate  transfer  function  [Ref.   8,   pp.69-711. 
Many o f   t he   t r ans fe r   func t ions   fo r   t h i s   sys t em  have   been   ob ta ined  
i n   g r a p h i c a l  f o r m  f o r  a wide  var ia t ion  of   the  parameters  N and 
q ,  and w i l l  a p p e a r   i n  a forthcoming  monograph.? 

One m e a s u r e   o f   t h e   e f f e c t i v e n e s s   o f   t h e   v i b r a t i o n   i s o l a t o r  
i s  t h e  RMS va lues  of t h e  responses.  The RMS va lue  of t h e  acceler- 
a t i o n  x and  the relakive displacement 6 are determined  using 
t h e   t r a n s f e r   f u n c t i o n s   g i v e n  by Equations (5) and ( 6 ) ,  respec- 
t i v e l y  [Ref. 8 ,  p.711.  Written  in  nondimensional terms, t h e s e  are: 

f- This  monograph,  which i s  being  prepared  under  Contract N o .  
N00173-68-C-0072 f o r   t h e  Shock  and Vibrat ion  Information  Center  
of   the  Naval Research  Laboratory w i l l  b e   e n t i t l e d  "The Inf luence  
of Damping i n   V i b r a t i o n   I s o l a t i o n "  by Jerome E. Ruzicka  and 
Thomas F. Derby. 



Since  the  excitation  spectral  density Wo is  in  terms  of  cycles 
per  second,  the  undamped  natural  frequency wo was  converted  to 
2.rrfo, where fo is  in  units  of  cycles  per  second.  Equations  (26) 
and (27 )  are  displayed  graphically  in  Figures 16 and 17, respectively. 

For a random  process  which  is  stationary  and  normally  distri- 
buted  with  zero  mean,  the  expected  frequency  fe  (i.  e. , the  average 
number  of  zero  crossings  with  positive  slope  per  second)  is  given 
as  the RMS value  of  the  derivative of  the  random  variable  divided 
by  the RMS value of  the  random  variable  [Ref. 8, p . 4 4 1 .  The ex- 

pected  frequency  fe  of  the  relative  deflection 6 has  been so 
calculated  and  is  given  in  nandimensional  form as: 

f 4N3 
N2+432 

This  equation  is  displayed  graphically  in  Figure  18.  If  the  re- 
sponse  of  the  relative  deflection 6 to  the  white  noise  accelera- 
tion  input  is a narrow-band  process  (i.e.,  the  response  has  the 
appearance of a sinusoid of frequency  fe  but  with  slowly  varying 
random  amplitude  and  random  phase),  then  the  expected  frequency  is 
useful  in  predicting  the  fatigue  life  of  the  isolator  [Ref. 8, 

pp.115-1251. Therefore,  care  must  be  taken in using  values  of fe 
from Figure 18 to insure  that  the  response  would  be a narrow-band 
process  (e.g., a system  with N = 03 and a high  value  of 3 would 
have a rather  broad-band  response). 

The curves  in  Figures 16 and 17, representing  the  dimension- 
less  acceleration xwskK- and  the  dimensionless  displacement cSREI&w, respectively,  all  have a minimum  at  some  value  of 5 .  
These  values  of 3 will  be  designated  as Tm and  are  plotted 
versus  the  stiffness  ratio N in  Figure 19. The significance  of 
these  values  of 3, is  similar  to  the  viscous  damping  ratio Tm 
defined  for  impulse  response,  namely,  for  given  values of the  mass 
m, the  stiffness k and  the  stiffness  ratio N, the  damping c 
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can  be  determined  from cm such  that  either  the RMS acceleration 
2 or  the RMS relative  displacement 6RMs are  minimized.  The 
expressions  for  these  values  of r ,  are  found  by  minimizing  the 
right  side  of  Equations  (26)  and  (27)  with  respect  to < and  are 
given  by 

RMS 

N 
2 cm = - (displacement) (30) 

Substituting  these  values  of 5, into  Equations  (26)  and  (27) 
results  in  the  following: 

Equations (31) and (32) are  plotted  in  Figures  20  and 21, respec- 
tively. 

Optimization  of  Parameters 

Similar  to  the  analysis  of  impulse  response,  the  parameters 
for  this  system  have  been  optimized  according  to  the  criteria: 
"For a given  input  and RMS deflection  of  the  isolator,  find  the 
isolator  parameters  that  will  minimize  the RMS acceleration  of 
the  isolated  mass". To accomplish  this,  the  cube of~-Equation (26) 
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w a s  m u l t i p l i e d  by Equation (27)  t o   o b t a i n  

wO 
64N45"  

t h u s   e l i m i n a t i n g  t h e  parameter   fo .   Equat ion  (33)  is presented  
g r a p h i c a l l y   i n   F i g u r e  22. Minimizing  Equation  (33)  with  respect 
t o  N and 5 r e s u l t s   i n  N = a and = 0 .707 .  Again, 
however, w e  w i l l  r e t a i n  N as a parameter  and  optimize 5 as a 
func t ion   of  N. This  i s  done  by  minimizing  Equation ( 3 3 )  w i t h  
r e s p e c t   t o  S ,  which r e s u l t s   i n  

OP  OP 

(34 

Equation  (34) i s  d i s p l a y e d   g r a p h i c a l l y   i n   F i g u r e  23. The 
optimum na tu ra l   f r equency  (fo) can be obta ined  as a f u n c t i o n  

OP 
o f   t h e   s t i f f n e s s   r a t i o  N by s u b s t i t u t i n g  the value  of 5 given 
i n   E q u a t i o n   ( 3 4 )   i n t o   e i t h e r . . E q u a t i o n  (26 )  or Equation ( 2 7 ) .  I n  
o r d e r   t o   p l o t   ( f o )   i n  the most  convenient  form, t he  r e c i p r o c a l  
of  Equation (26 )  squared w i t h  5 = 5 i s  des igna ted  as t h e   o p t i -  
mum frequency  parameter (W /22ms) (fo) and i s  p l o t t e d   v e r s u s  
the s t i f f n e s s   r a t i o  N i n   F i g u r e  2 4 .  A p l o t  of an optimum  dimen- 
s i o n l e s s   a c c e l e r a t i o n  xRMs/g, where g i s  the  a c c e l e r a t i o n   o f  
g r a v i t y ,   v e r s u s  a dimensioniess   displacement  
o b t a i n e d   f o r   v a r i o u s   v a l u e s  of N by using  Equat ion  (33)   with 
5 = cop. These  curves,  called t rade-of f  l i m i t  curves ,  are shown 
i n   F i g u r e  25. The curve labeled N = 03 is also des igna ted  as 
"BEST POSSIBLE". T h i s   r e s u l t  w a s  ob ta ined   in   Reference  9 .  

OP 

OP 
OP 

0 OP 

3 
Jga6Fms/wo2 w a s  

ljesign  Example 

The fo l lowing   des ign   example   i l l u s t r a t e s   t he   u se   o f  the 

optimum design  graphs.  I t  i s . r e q u i r e d   t h a t ,   t h e   p a r a m e t e r s  N ,  
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c ,  and f o  be  determined,  which  will  minimize  the  RMS  acceleration, 
given  that  the  allowable  RMS  relative  displacement  is 0.1 inches 
and  the  input is a  random  acceleration  of  the  base  with  a  uniform 
spectral  density  equal  to 0.1 g2/cps.  The  input  spectral  density 
Wo = g2 (0.1) so that 

g3tims/Wo2 = 0 .296  

Since  no  restriction  is  placed  on  the  stiffness  ratio N, let 
N = a. From  Figure 25  the  optimum  dimensionless  acceleration 
xRMs/s is 1.83 g's. The  value  of  corresponding  to N = a 
is cop = 0 . 7 0 7 .  Also with N = 03 the  value  of  the  optimum  fre- 
quency  parameter  CWo/xms) (fo 1 op is 0.3 as  can  be  seen from 
Figure 24. Therefore,  (foIop = 5.5 cps. 

**  2 

Similar  to  the  discussion  of  the  design  example  for  the 
impulse  response,  a  finite  value  of N may  -have  to  be  chosen. 
For  this  reason  the  optimizations  have  been  presented  in  Figures 
22 through 25 retaining N as  a  parameter. 

2 0  .. 



RESPONSE TO VARIOUS PULSE SHAPES 

The  pulses  to  be  considered  in  this  section  are  shown  in 
Table 11. All  the  pulses  are  acceleration  time  histories of the 
base. The peak  value  is  defined  as S o ,  and  the  time  duration  as 
t,. The  area  under  the  pulse  is  the  velocity  change  associated 
with  that  pulse,  and  is  designated  by V. In equation  form 

V =St’ S dt 
0 

( 3 5 )  

Equations  of  the  time  histories of base  accelerations, as well as 
the  associated  velocity  changes  are  also  given  in  Table 11. 

The velocity  time  histories  of  the  base  start at  zero and 
reach a value of V at  time t = t,,  remaining  at  this  constant 
value  for  t>t,. The only  distinction  in  the  velocity  time 
histories  is  the  manner  in  which  the  final  value V is  reached, 
during  the  time t = 0 to t = t,.  If  the  natural  period of the 
responding  system T is  much  larger  than  tl, it makes  very 
little  difference  how  the  final  velocity  value  was  reached.  All 
the  pulses  can  then  be  considered  as  impulses  of  area V. This 
is a fortunate  result  since  in  most  cases  the  input  can  be  con- 
sidered  as  an  impulse  in  the  region  of  shock  isolation (i.e., when 
the  peak  response  of  the  system x is less  than  the  peak  input 
S o ) .  This  point  will  be  discussed  in  more  detail  in  the  evalua- 
tion of the  shock  spectra  graphs. 

0 

The  responses  to  be  considered  are  the  acceleration  of  the 
mass x, and  the  relative  deflection  across  the  isolator 8 .  The 
main  concern is the  maximum  value  of  these  quantities,  designated 
as ilo and 6 0 ,  respectively.  In  order  to  nondimensionalize 
these  response  quantities we  will  consider %,/ao and 6 o w ~ / S o  
as the  response  parameters,  where w o  = J m  is  the  undamped 
natural  frequency  of  the  system  shown in Figure l(a). 
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TABLE I1 

INPUT 
PULSE 

a0 " 1/\ 
4 t, I- 
Half-Cycle 

Sine 

+I t ,  c1- 
Rectangular an 
I- t, -4 

Versed-Sine 

- I t ,  ow I- 
Terminal-Peak 

Saw-Tooth 

"4 '"k t ,  I- 
Symmetrical 
Triangle 

00  - 

"4 n ' t ,  L 
Initial-Peak 

Saw-Tooth 

TIME-HISTORY 
EXPRESSION  FOR a 

aoCl-u(t-tl) 1 

.. a 
2 

0 - c1 - COS(2Tt/tl) 

2aoEt/tl-2(t-$ tl)/tlU(t"2 1 tl) 

;io{1-t/t1 4- - t-tl 
tl u (t-t1)1 

VELOCITY 
CHANGE V 

2 - aotl 
7r 

aot1 

7 1 aotl 

3 1 aotl 

2 1 aotl 
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Knowing  the  Laplace  transform  of  the  input a ( s ) ,  we  can 
obtain  the  Laplace  transform of the  outputs x ( s )  and S ( s )  

from  Equations (5) and (6), respectively.  In  the  presentation  of 
the  transforms  it is convenient to define 

TI = wotl (36) 

as a nondimensional  pulse  duration  similar  to  the  definition of 
'I: in  Equation (14). Let 

Y = s/wo (37) 

The transforms X [ y S o ]  and g[6w:/Zo] can  then  be  obtained  in 
the  form 

S[Q(t) I = - 1 g(y,r1 ,N,T) (38) 
O O  

where  Q(t)  stands  for  either 2/g0 or 6wE/So as a function 
of  time t. From  the  change  of  scale  theorem  [Ref. 101 

1 s  di[f (at) 1 = a F (39) 

where F (s)  L[f (t) 1. Q(t)  can  be  obtained  by  taking  the 
inverse  transform of g(s, T ~ ,  N, z;) and  replacing t by wot 
(i.e.,  using T = w t, Q('I:) = S-l[g(s, TI, N, < ) I .  Therefore, 
the  maximum  value  of  Q(T) will be a function  of TI, N, and 5. 

The  following  subsections  will  give  the  equations  for X[Z;], 
X [ i t / a o ] ,  X[6wE/20], # / ; i o ,  and 6w:/So for  the  six  pulses:  half- 
cycle  sine,  rectangular,  versed-sine,  terminal-peak  saw-tooth, 
symmetrical  triangle,  and  initial-peak  saw-tooth. 

0 
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Half-Cycle  Sine  Pulse 

Using  the  definitions  given  for T I  and  y  in  Equations 
(36)  and  (37),  respectively,  the  Laplace  transform  of  the  equation 
for a given  in  Table I1 is 

where 

Since  the  form  of  Equations (5 )  and  (6)  is  the  same,  the  trans- 
forms  and  time  histories  of %/so and 6 w E / a o  will  have  the 
same  form.  The  following  table  defines  a  quantity Q and 
associated  multiplier M and  coefficient p to  be  used  in  the 
transform  and  time  history  expressions. 

I Q M 

x/so A (N+1) 

Combining  Equation ( 4 0 )  with  Equations (5) and (6) results  in 
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The form  of  the t i m e  h i s t o r i e s  Q ( T )  depends  on t h e   n a t u r e  

of the   roo t s   o f   t he   cub ic   exp res s ion   i n   Equa t ion  ( 4 2 ) .  The case 
where there are e i t h e r  two o r  three equal  real r o o t s  w i l l  no t   be  
c o n s i d e r e d   s i n c e   f o r   t h e   p a r t i c u l a r   v a l u e s   o f  N and < t h a t  
are t o  be   used ,   the   s i tua t ion   does   no t  arise. The roo t s   o f  t h e  

cubic  w i l l  be   designated as yl, y2, and y3. 

Case 1: y1 - -a + jk3, y2 = -a -jB, and y3 = -y. The i n v e r s e  - 

transform  of  Equation ( 4 2 )  was ob ta ined   u s ing   t r ans fo rm  pa i r  1 0 6  

[Ref. 1 1 1 ,  and i s  given  by 

where 

X = y 2  + x 2  , Y = ( y - a )  + p 2  , z = (a2+82-12)2+(2a~)2 

4 = tan-' X + t a n  -' x Y. + t a n  -1 a2 + f32 - x 2  
P 2aX 

8 + t a n  - -1 y-a -1 a2 - 8 2  + x 2  8 = t a n  - t a n  
P -a 2aB 

Case 2:  y1 = -a, y2 = - 8 ,  and y3 = -Y. The inverse   t ransform 
of   Equat ion ( 4 2 )  w a s  ob ta ined   u s ing   t r ans fo rm  pa i r  244 [ R e f .  111 
and i s  given by 
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+ = tan-' + tan-' X + tan - - tan - -1 x 
8 Y P 

Rectangular  Pulse 

The  Laplace  transform of the  equation  for  a  given  in .. 
Table I1 is 

The  following  table  defines  a  quantity Q and  associated 
multiplier M and  coefficient p to  be  used  in  the  transform 
and  time  history  expressions. 

Q M P 

I I I 1 

2 6  



Combining  Equation ( 4 5 )  with  Equations (5)  and (6) results  in 

Q ( s )  = - ' M  Y + P  
% y[y3 + 25 y2 + ( N + 1 )  y + - 

25 1 N 

The  roots of the  cubic  expression  in  Equation (46 )  will  be 
designated  as ylr y 2 r  and y3. 

Case 1: y1 = -a + jf3, y2 = -a -jf3, and y 3  - -y. The  inverse - 
transform  of  Equation ( 4 6 )  was  obtained  using  transform  pair 86  

[Ref. 111 and is given b y :  

where 

= tan-' + tan a + tan - -1 B 
0l-Y P-a 

Case 2: y1 = -a ,  y2 = - 8 ,  and y 3  = -y. The  inverse  transform 
of Equation ( 4 6 )  was  obtained  using  transform  pair 27 [Ref. 113 

. and  is  given  by 

(47) 
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where 

Versed-Sine  Pulse 

The  Laplace  transform  of  the  equation  for  a  given  in .. 
Table I1 is 

where 

The  following  table  defines  a  quantity Q and  associated 
multiplier M and  coefficient p to  be  used  in  the  transform 
and  time  history  expressions. 

Q M 

x / a o  (N+-1) h 
2 

I I I I 
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Combining  Equation (49) with  Equations (5) and (6) results  in 

The  roots  of  the  cubic  expression  in  Equation (51) will  be 
designated  as ylr  yzr and y3. 

Case 1: y1 = -a + j B f  y2 = -a - j B ,  and y3 '= -y. The  inverse 
transform of Equation (51) was  obtained  using  transform  pair 2 5 1  
[Ref. 111 and  is  given  by 

where 

c1 = P I c2 = P - Y  
y (a2+B2) x2 yl: (a-yI2 + B 2 1  CY2+X21 

c3 = '[ ( p - a I 2  + B 2  
B (012+82) [ (2aB)2 + (a2-B2+X2) 21  (y-a)2 + B 2 1  I$ 

l i  p 2  + h 2  
x (y2+X2) [ ( 2 a X )  + (a2+B2-X2) 2 1  

c4 = - 

2 9  



4 = t a n  + t a n  - t a n  -1 a - tan-l -1 y -a  -2aB 
P-a  E a2-B2+P 

Case 2: y1 = - a ,  y2 = -6, and y3 = -y.  The inverse   t ransform 
of Equation  (51) was obta ined   us ing   t ransform  pa i r  245  [Ref. 111 
and i s  given by 

+ = tan-' h + t a n  -' x + t a n  - -1 a tan-l 1 
P Y 
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Terminal-Peak  Saw-Tooth  Pulse 

The  Laplace  transform  of  the  equation  for ii given  in 
Table I1 is 

The following  table  defines a quantity Q and  associated 
multiplier M and  coefficient p to  be  used  in  the  transform 
and  time  history  expressions. 

I Q I 
I 

M P 
~~ 

x/so 

-6w;/Zo 

N+l 

N - 
26 

Combining  Equation (54) with  Equations (5) and ( 6 )  results  in 

--r 1 Y + P  
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Case 1: y 1  = -a + j B ,  y 2  = -a - j B 1  and y3 = -y -  The inve r se  

t ransform of Equation  (55) w a s  ob ta ined   us ing   t ransform  pa i r s  90 
and 86  [Ref. 113 and i s  given by 

8 = t a n  B + t a n  a + t a n  -1 U-Y P - a  

Case 2: y1 = - a f  y2 = -6, and y 3  = -y. The inverse t ransform 

Equation (55-) was obta ined   us ing   t ransform  pa i r s  31  and 27 
[ R e f .  113 and i s  given by 
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where 

Symmetrical  Triangle  Pulse 

The  Laplace  transform  of  the  Equation  for a given  in 
Table I1 is 

The following  table  defines a quantity Q and  associated 
multiplier M and  coefficient p to be  used  in  the  transform 
and  time  history  expressions. 

Q I M P 

x/ao 2 (Nfl) 
Tl 
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The inverse 
transform of Equation ( 5 9 )  was  obtained  using  transform  pair 9 0  

[ R e f .  111 and is given  by 

I 

where 

P 1 1  2a c1 = 
y ( a 2  + B 2 )  P Y a 2 f B 2  

, C 2 = - - - -  

3 4  
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Initial-Peak  Saw-Tooth  Pulse 

The  Laplace  transform of the  equation  for a given  in 
Table I1 is 

The  following  table  defines  a  quantity Q and  associated 
multiplier M and  coefficient p to  be used in  the  transform 
and  time  history  expressions. 

Q I M P 

Combining  Equation ( 6 2 )  with  Equations ( 5 )  and ( 6 )  results  in 
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The  roots of the  cubic  expression  in  Equation ( 6 3 )  will  be 
designated  as yl, y2, and  y3. 

Case 1: y1 = -a + jB, y2 = -a - jB, and y3 = -y. The inverse 
transform  of  Equation ( 6 3 )  w a s  obtained  using  transform  pairs 
90 and 86 [Ref. 111 and  is  given  by 

0 = tan - B + tan a + tan - a-Y P-a 
-1 B 
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Case 2: y1 = - a ,  y2 = -6, and  y3 = -y. The  inverse  transform 
of Equation (63) was  obtained  using  transform  pairs 31 and 27 
[Ref. 111 and  is  given  by 

where 

Graphical  Presentation of Results 

For each  pulse,  the  results  are  presented  in  terms oEthe 
peak  values of the  quantities %/ao and 6 w E / i i 0 .  The  peak 
values  are  designated  as  a  dimensionless  acceleration xo/iio 
and  a  dimensionless  displacement S o w i / i i 0 .  Both 'Xo/so and 
6ou:/ao are  functions  of  the  system  parameters N and 5 ,  and 
of  the  nondimensional  pulse  duration = wotl.  In  the  presenta- 
tion  of  the  results,  the  stiffness  ratio N takes  on  the  values 
1, 3 ,  8, 24, and 0. The  viscous  damping  ratio 5 takes  on  the 
values 0, 0.1, 0.2, 0 . 3 ,  0.5,  1, 2, 5,  10, and 03 f o r  the  finite 
values of N and  the  values 0, 0.1, 0.5, and 1 for N = 03. The 
dimensionless  acceleration xo/;io and  the  dimensionless 
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displacement 6 o w ~ / i i o  are  plotted  versus a time  ratio  tl/T 
where T = 2a/wo (i.e.,  tl/T = - r 1 / 2 ~ ) .  For  .each  graph  there  is 
a particular  value  of  the  stiffness  ratio N and  each  curve  on 
the  graph  is  for a particular  value  of  the  viscous  damping  ratio 
3 .  The  results  are  presented  for  the  six  pulses  in  the  following 
order:  half-cycle  sine,  rectangular,  versed-sine,  terminal-peak 
saw-tooth,  symmetrical  triangle,  and  initial-peak  saw-tooth.  Each 
pulse  has  ten  graphs  associated  with  it  in  the  following  order: 
the  dimensionless  acceleration  for  the  five  values  of N, and  the 
dimensionless  displacement  for  the  five  values of N. Hence, 
there  are a total  of 60 shock  spectra  graphs  comprising  Figures 
26 through 8 5 .  

Numerical  Procedures.-For  the  finite  values  of N, the  results 
were  obtained  using a digital  computer  and  the  graphs  were  plotted 
automatically.  It  was  determined  that  at  least 150 points  per 
curve  were  necessary  to  adequately  define  each  curve.  There  are 
two  response  quantities,  four  values  of N, ten  values  of <, and 
150 points  per  curve  for  each  of  the  six  pulse  shapes.  Therefore, 
72,000 time  histories  were  analyzed  to  determine  their  peak  values. 
Since  there  are so many  time  histories it  is  important  to  deter- 
mine a fairly  simple  automated  procedure  to  find  their  maximum 
value. 

The  procedure of setting  the  derivative  of  the  time  history 
to  zero,  solving  for  the  time,  and  then  substituting  the  time  into 
the  original  equation  was  not  used  for  two  reasons: (1) the  equa- 
tions  to  be  solved  are  fairly  complicated  transcendental  equations; 
and ( 2 )  most of the  time  histories  have  many  local  maxima  and 
minima so that  the  transcendental  equation  would  have to be  solved 
many  times to find  the  global  maximum.  Instead,  the  problem  was 
first  set  up  on  an  analog  computer  and  estimates  were  made  of 
where  the  maximum  would  occur  in  time,  and  how  fast  the  function 
was  varying  with  time.  Then  values  of  the  time  history  were  com- 
puted  over a range  including  the  estimated  time  of  the  maximum 
value. 
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For those  time  histories  that  had  sharp  peaks  at  their  maxi- 
mum  value  an  approximate  damped  natural  frequency  was  determined, 
using  the  undamped  natural  frequency  expression  and  substituting 
the  real  part  of  the  complex  stiffness  of  the  system  for  the 
stiffness K of  the  undamped  system.  This  resulted  in  a  damped 
natural  frequency wd that-as  related to the  undamped  natural 
frequency w o  as  follows  [Ref. 121 

I 

I 

Solving  this  equation,  and  using  the  definitions Td = 27r/wd; 
T = 27r/w0; A = yz] ; and B = N + 1, the  expression  for  the 
damped  natural  period  is  given by: 

2 

U I 

Since  the  time  histories  are  written  in  terms  of  a  nondimensional 
t-ime T = w t, it  is  desirable  to  define  a  nondimensional  natural 
period  as 

0 

TO achieve  the  desired  degree  of  accuracy  (approximately  one 
percent  error)  it  was  found  by  trial  and  error  that  20  points  per 
period  were  necessary. A nondimensional  time  increment AT was 
determined  from  Equations ( 6 7 )  and (68) as  follows 

42 (2Tr)/20 A T  = 
I , 

f B - A  + d ( B - A )  + 4A 
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where 

A = (N/2S)2 , B = N f 1 

The  damped  free  vibration  natural  frequency  (i.e.,  the 
imaginary  part  of  the  complex  roots  obtained  from  the  character- 
istic  equation)  cannot  be  used  to  determine A T .  For  the 
overdamped  condition,  the  damped  free  vibration  natural  frequency 
does  not  exist.  When  the  system  is  close  to  being  critically 
damped,  this  frequency  is  very  low,  and is not  at  all  indicative 
of  how  fast  the  system  can  respond  to  the  input. 

When  the  time  history  was  being  computed,  the  maximum  value 
as  well  as  the  values  on  each  side of maximum  were  determined. 
A parabola  was  then  passed  through  these  three  points,  and  the 
peak  value  of  the  parabola  was  taken  as  the  maximum  value  of  the 
time  history. 

Comparison  to  Impulse  Response 

As the  pulse  duration tl becomes  very  small  compared  to  the 
natural  period T, the  response  cannot  follow  the  input  and  the 
input  becomes  essentially  an  impulse.  On  the  graphs,  the  straight 
line  asymptotes  that  the  curves  follow  as tl/T+O, are  the  curves 
that  would  be  obtained  if  the  pulses  were  considered  as  impulses. 

From  Figure 6 ,  for  some  particular  values of N and 5, 
there  will  be a particular  value,  say Q l ,  for  the  quantity 
Xo/w0v. In  equation  form , 
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From Table 11, V = - a tl for  the  half-cycle  sine  pulse.  Using 
w = 27r/T, Equation (70) can  be  rewritten  as 

2 .. 
I T 0  

0 

Equation (71) is  the  equation  for  the  straight  line  asymptotes  in 
Figures  26  to  29.  Similarly  the  equation  for  the  straight  line 
asymptotes  for  the  rectangular  pulse is 

and  the  equation  for  the  straight  line  asymptotes  for  the  versed- 
sine,  terminal-peak  saw-tooth,  symmetrical  triangle,  and  initial- 
peak  saw-tooth  pulses  is 

Since  most of the  shock  spectra  curves  for xo/ao are 
essentially  straight  lines  below %o/ao = 1, which  is  the  shock 
isolation  region,  the  pulse  can  be  considered  as  an  impulse  in 
this  region  and  all  of  the  results  in  the  section  dealing  with 
the  response of- the  system  to  an  impulse  are  applicable.  This 
is a  fortunate  result,  since  if  the  isolation  system  is  being 
designed  primarily  to  isolate  one of  these  pulses,  certainly  the 
desired value of x o / a o  would  be  less  than  unity.  Therefore, 
the  shock  spectra  graphs  (Figures  26  through 85)  would  be  used 
primarily  for  analysis of shock  response  of  a  system  designed  to 
provide  vibration  isolation 
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RESULTS AND CONCLUSIONS 

The  results of this  investigation  of  an  isolation  system 
using  relaxation  type  damping  are: 

Determination  and  graphical  presentation  of  the  regions 
where  the  system  is  underdamped  and  overdamped  as a func- 
tion  of  the  system  parameters. 

Expressions  and  graphical  presentation  for  the  accelera- 
tion of the  mass  and  the  deflection  of  the  isolator  in 
response  to  an  impulse  acceleration  of  the  foundation. 

Optimization  of  the  parameters  for  the  impulse  response 
according  to  the  criteria:  for a given  input  and  maximum 
deflection of the  isolator,  minimize  the  maximum  accelera- 
tion  of  the  isolated  mass. 

Presentation  of  trade-off  limit  curves  for  the  optimized 
system. 

Same  as (2 )  , ( 3 )  , and ( 4 )  above  except  that  the  input is 
white  noise  acceleration of the  foundation  and  the  re- 
sponses  are  the RMS levels  of  the  acceleration  of  the 
mass  and  the  deflection  of  the  isolator. 

Expressions  and  graphical  presentation  for  the  accelera- 
tion  of  the  mass  and  the  deflection of the  isolator  in 
response  to  six  acceleration  pulses  of  the  foundation  as 
follows:  half-cycle  sine,  rectangular,  versed-sine, 
terminal-peak  saw-tooth,  symmetrical  triangle,  and 
initial-peak  saw-tooth. 

Comparison  of---the  pulse  excitation  responses  to  the 
impulse  responses. 
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Specific  conclusions  drawn  are: 

(1) For  values  of  the  stiffness  ratio N less  than  eight, 
the  system is underdamped  regardless of  the  value  of  the 
viscous  damping  ratio c ;  for  values of N greater  than 
eight  there  are  two  values of 6 for  which  the  system 
is  critically  damped  and  the  system  is  overdamped  for 
values  of 5 between  these  two  values. 

(2)  The  optimum  value of the  viscous  damping  ratio 5 is 
different  for  different  criteria.  In  this  report,  five 
different  criteria  were  used  resulting  in  the  five 
different  curves  shown  in  Figures LO, 12, 19, and  23. 
Also, these  curves  differ  from  similar  optimum  viscous 
damping  ratio  curves  obtained  by  minimizing  the  resonant 
response  to  sinusoidal  vibration  [Ref. 131. 

(3) The  optimum  value  of  the  stiffness  ratio N was  found 
to be  infinity  for  both  the  impulse  response  and  random 
vibration  using  the  criteria:  for  a  given  impulse  (white 
noise)  input  and  a  maximum (RMS level)  deflection  of  the 
isolator,  minimize  the  maximum (RMS level)  acceleration 
of  the  mass.  The  optimum  values  of  the  viscous  damping 
ratio  corresponding  to N = Q) are = 0.4  for  impulse 
response  and = 0.707 for  random  vibration.  However, 
both  of  these  isolation  systems  would  make  very  poor  high 
frequency  vibration  isolators. 

OP 

(4) Comparing  the  optimum  relaxation  system  for  impulse  re- 
sponse  in  (3)  above  to tlie best  possible  system,  showed 
that  the  optimum  relaxation  system  was  only  4  percent  worse 
(i.e., f o r  a  given  input  and  deflection,  the  acceleration 
was  only  4  percent  greater  than  the  acceleration  obtained 
by the  best  possible  system).  The  best  possible  isolator 
for  this  criteria  is  a  constant  force  device  (e.g.,  Coulomb 
friction  damper  or  crushing  material).  Unless  an  active 
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mechanism  is  employed,  the  constant  force  device  does 
not  return  to  its  initial  position  whereas  the  system 
with a spring  and  viscous  damper  does.  Another  dis- 
tinction is that  if  the  input  were  doubled,  both  the 
acceleration  and  deflection  of  the  system  with  the  spring 
and  damper  would  be  doubled  whereas,  for  the  system  with 
a constant  force  device,  the  acceleration  would  stay  the 
same  and  the  deflection  would  be  quadrupled. 

The  optimum  relaxation  system  for  random  vibration  in ( 3 )  
above  is  identical  to  the  best  possible  linear  system  for 
this  criteria  [Ref. 91. 

The  optimum  values  of N and 5 for  both  impulse  re- 
sponse  and  random  vibration  are  not  dependent  on  the 
desired  trade-off  between  acceleration  and  deflection. 
The  trade-off  between  acceleration  and  deflection  is 
dependent  only on the  undamped  natural  frequency wo 

and  the  magnitude  of  the  input. 

The  optimum  solutions  for  both  impulse  response  and 
random  vibration  are  not  overly  sensitive  to  changes in 
the  parameters N and  from  their  optimum  values. 
This  sensitivity  is  depicted  in  Figure 11 (impulse  re- 
sponse)  and  Figure 22  (random  vibration). 

In the  region  of  shock  isolation  (i.e.,  for  the  peak 
acceleration  of  the  mass  less  than  the  peak  input 
acceleration)  the  responses  to  the  six  pulses  are 
essentially  equal  to  the  impulse  responses.  Therefore, 
in  this  region  all of  the  results  for  the  impulse  re- 
sponse,  including  the  optimizations,  are  applicable  to 
the  responses  to  the  pulses. 

A final  comment  must  be  made  regarding  the  selection  of 
values of N other  than N = a. The difference  between  the 
vibration  isolators  shown  in  Figures 1 (a)  and  (b)  and  the 
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conventional  model  of  an  isolator  (i.e., a spring  and  damper  in 
parallel)  can  be  thought of in  terms  of  the  stiffness  ratio N.  

If N = m ,  both  systems  shown  in  Figure 1 reduce  to  the  conven- 
tional  model.  Values of N other than N = have  to  be  con- 
sidered  since: (1) many  isolation  systems  can  be  represented  by 
models  having  a  finite  value  of N; and (2) there  are  cert-ain 
desirable  features  of  an  isolation  system  having  a  finite  value 
of N. 

An  example of an  isolation  system  having  a  finite  value  of 
N is  one  that  uses  an  elastomer  as  a  resilient  element.  Elasto- 
mers  can  be  very  effectively  modeled  by  the  systems  shown  in 
Figure 1, but  not  by  the  conventional  model  [Ref. 41, Another 
example  is  the  suspension  system  of  automobiles.  This  system  can 
be  represented  by  the  model  shown  in  Figure 1 ( b )  where k repre- 
sents  the  stiffness  of  the  suspension  system  and Nk represents 
the  stiffness  of  the  tires. To obtain  a  value of N equal to 
infinity,  the  tires  would  have to be  infinitely  stiff. 

One  desirable  feature of an  isolation  system  employing  an 
elastically  coupled  damper  resides  in  the  fact  that  it  acts  as 
though  it  were  undamped  for  high  frequency  excitation  but  damped 
at  resonance,  thereby  giving  good  high  frequency  isolation  while 
controlling  the  maximum  response  at  resonance.  Another  desirable 
feature  is  that  a  finite  value  of N greatly  reduces  the  jerk 
(i.e.,  the  derivative  of  acceleration) of--the isolated  mass.  If 
the  isolated  mass  happens  to  be  a  human,  this  results  in  a  much 
more  comfortable  ride. 

Therefore,  although  in  the  examples  discussed  for  the  impulse 
response  and  random  vibrations  the  optimum  value  of N is N = 03, 
the  results  are  shown  as  a  function  of N since  they  would  be 
useful  in  many  actual  design  applications. 
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Figure 1.-Schematic diagrams of isolation  systems  with 
elastically  coupled  viscous  danping 
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Figure  3,-ROOt locus plot of the denominator of Equations (5) and (6) 
with N = 3 
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Figure 5.-Root locus plot of the  denominator of Equations (5) and (6) 
with N = 15 
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Figure 6.-Acceleration response to a velocity  step  for 
the  isolation  system shown in Figure 1(a> 
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Figure  7.-Acceleration  response to a  velocity  step for 
the  isolation  system shown in  Figure l ( a )  
(Figure 6 expanded) 
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Figure 8.-Displacement response  to a velocity step  for 
the isolation  system  shown  in  Figure  l(a) 
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Figure 9.-Displacement response  to a velocity  step for 
the  isolation  system shown in  Figure  l(a) 
(Figure 8 expanded) 
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Figure 10.-Viscous damping  ratio  that  minimizes  the 
values of the  dimensionless  acceleration 
(Figure 7) 
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Figure 11.-The displacement  times  the  acceleration 
divided by the velocity  step  squared f o r  
the  isolation  system  shown  in  Figure  l(a) 
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Figure 12.-Optimum viscous  damping  ratio  obtained by 
minimizing  the  parameter 60%o/V2 (Figure 11) 
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Figure 13.-Optimum frequency  parameter  obtained by using 
the  optimum viscous  damping  ratio  (Figure 12) 
with  the  dimensionless  displacement  (Figure 9) 
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Figure 14.-Trade-off limit  curves  for  the  response  to a 
velocity  step of the  isolation  system  shown 
in  Figure 1 (a) 
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Figure 16.-RMS acceleration  response to white  noise 
acceleration  input for  the isolation  system 
shown in Figure  l(a) 
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Figure 17.-RMS displacement  response to white  noise 
acceleration  input  for  the  isolation  system 
shown in  Figure l(a> 
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Figure 24. -Optimum  frequency  parameter  obtained by 
using  the  optimum  viscous  damping  ratio 
(Figure 23) with  the  dimensionless 
acceleration  (Figure 16) 
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Figure 26.-Peak acceleration  response to an acceleration 
half-cycle  sine  pulse  input f o r  the  isolation 
system  shown in Figure l ( a )  with N = 1 
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Figure  l(a)  with N = m 
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Figure 31.-Peak displacement  response  to  an  acceleration 
half-cycle  sine  pulse  input  for the  isolation 
system shown in Figure l ( a )  with N = 1 
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half-cycle  sine  pulse  input fo r  the  isolation 
System shown in Figure  l(a)  with N = 3 
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Figure 34.-Peak displacement  response to an  acceleration 
half-cycle sine  pulse  input for the  isolation 
system  shown in Figure  l(a)  with N = 24 
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Figure 35.-Peak displacement  response to an  acceleration  half-cycle 
sine  pulse  input  for  the  isolation  system shown in 
Fiaure  l(a)  with N = M r. . .  
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Figure 36.-Peak acceleration  response  to  an  acceleration 
rectangular  pulse  input for the  isolation 
system  shown  in  Figure  l(a) with N = 1 
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Figure 46.-Peak acceleration  response  to  an  acceleration 
versed-sine  pulse  input  for the  isolation 
system  shown in Figure  l(a)  with N = 1 
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Figure 47.-Peak acceleration  response to an  acceleration 
versed-sine  pulse  input  for  the  isolation 
system  shown  in  Figure  l(a) with N = 3 
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Figure 5l.-Peak displacement  response  to  an  acceleration 
versed-sine  pulse  input for  the  isolation 
system  shown  in  Figure  l(a)  with N = 1 
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Figure 52.-Peak displacement  response to an acceleration 
versed-sine  pulse  input for the  isolation 
system  shown  in  Figure 1 (a) with N = 3 
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versed-sine  pulse  input for  the  isolation 
system shown in  Figure  1(a)  with N = 8 

101 



2.0 

0 > 
3 
0 co 

I- - 1.5 z 
w x 
w 
0 < 
-I 
CL 
tn 
0 

tn 
tn 
W 
-I z 
0 

tn 
W 
E 
0 

w 1-0  

w 

0.5 
M 

0.0 
0 1 2 3 4 

T I M E  RATIO. t , / ~  
Figure 54.-Peak displacement  response to an acceleration 

versed-sine pulse  input f o r  the isolation 
system shown in  Figure 1 ( a )  with N = 24 



2.0- 

1.5 - 

1.0 - 

0.5 - 

0- 
[ 

TIME RATIO,  t,/T 
Figure 55.-Peak displacement  response to an  acceleration  versed-sine 

pulse  input for the isolation  system shown in  Figure l ( a )  
with N = 03 



2.0 

0 

% 0 

:X 

Z - 1.5 
0 
w 
I- 
< 
fY 
W 
-I 
w 
u 
< 
v) 
v) 
w 
z J 

0 

u) 

w 
E 

0 

" 1.0 

H 

* 0.5 
U 

0.0 
0 1 2 3 4 

TIME RAT IO, t,/T 

Figure 56.-Peak acceleration  response  to  an  acceleration 
terminal-peak saw-tooth pulse  input f o r  the 
isolation  system  shown  in Figure l(a)  with N = 1 
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sawtooth pulse  input  for  the  isolation  system  shown in 
Figure 1 (a) with N = 
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Figure 62.-Peak d isp lacement   response   to   an   acce le ra t ion  
terminal-peak  saw-tooth pulse i n p u t  fo r  t h e  
i s o l a t i o n  system shown i n   F i g u r e  l ( a )  wi th  N = 3 
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Figure 63.-Peak displacement  response  to an acceleration 
terminal-peak  saw-tooth  pulse  input f o r  the 
isolation  system  shown  in  Figure  l(a)  with N = 8 
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isolation  system  shown in  Figure l ( a )  with N = 24 
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Figure 1 (a)  with N = 03 4-J 
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Figure 67.-Peak acceleration  response  to an acceleration 

symmetrical  triangular  pulse  input f o r  the 
isolation  system  shown  in  Figure  l(a) 
with N = 3 
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Figure 68.-Peak acceleration  response  to an acceleration 

symmetrical  triangular  pulse  input  for  the 
isolation  system  shown  in  Figure  l(a) 
with N = 8 
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Figure  70.-Peak  acceleration  response to an  acceleration  Symmetrical 
triangular  pulse  input  for the isolation  system  shown  in 
Figure 1 (a)  with N = 03 
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Figure 71.-Peak displacement  response  to an acceleration 
symmetrical  triangular  pulse  input for  the 
isolation system shown  in  Figure  l(a) 
with N = 1 
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Figure 72.-Peak displacement  response to an acceleration 
symmetrical t r i a n g u l a r  pulse  input fo r  the 
isolation  system  shown  in  Figure  l(a) 
with N = 3 
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Figure 73.-Peak displacement  response  to  an  acceleration 

symmetrical  triangular  pulse  input f o r  the 
isolation  system  shown  in  Figure  l(a) 
with N = 8 
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Figure 74.-Peak displacement  response  to  an  acceleration 
symmetrical  triangular  pulse  input for the 
isolation  system shown i n  Figure l ( a )  
w i t h  N = 24 
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Figure  75.-Peak  displacement  response to an  acceleration  symmetrical 
triangular  pulse  input for the  isolation  system  shown  in 
Figure 1 (a)  with N = 43 



tn 
Z 
W x 
H 

2.0 

195 

1.0 

0.5 

0.0 
0 1 2 3 4 

T IME RATIO, t,/T 

Figure  76.-Peak acce lera t ion   response   to   an   acce le ra t ion  
i n i t i a l - p e a k  saw-tooth p u l s e   i n p u t   f o r   t h e  
i so l a t ion   sys t em shown i n   F i g u r e  l ( a )  
with N = 1 
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Figure 78.-Peak acceleration  response  to an acceleration 
initial-peak  saw-tooth  pulse  input fo r  the 
isolation  system  shown  in  Figure  l(a) 
with N = 8 

126 



2.0 

1.5 

1 - 0  

0.5 

0.0 

LETTER u b c d e f g h i j 

5 Q 0.1 0.2 0.3 0.5 I 2 5 10 a> 

a, - 

"I h t, It 

0 1 2 3 4 

TIME RATIO9 tl/T 
Figure  79.-Peak  accelerat ion  response t o  an acceleration 

in i t ia l -peak   saw- tooth   pu lse   input   for  the  
i so l a t ion   sys t em shown i n   F i g u r e  l ( a >  
w i t h  N = 24 
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Figure 80.-Peak acceleration  response to an  acceleration  initial-peak 
saw-tooth pulse input  for the isolation  system  shown in 
Figure 1 (a) with N = 03 
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Figure 81.-Peak d i sp lacemen t   r e sponse   t o   an   acce le ra t ion  
in i t i a l -peak   s aw- too th   pu l se   i npu t   fo r   t he  
i so l a t ion   sys t em shown i n   F i g u r e  1(a)  
w i t h  N = 1 
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Figure 82.-Peak displacement  response to an acceleration 

initial-peak  saw-tooth  pulse  input  for  the 
isolation  system  shown in Figure l(a) 
with N = 3 
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Figure  83.-Peak d i sp lacemen t   r e sponse   t o   an   acce le ra t ion  
in i t i a l -peak   s aw- too th   pu l se   i npu t   fo r   t he  
i s o l a t i o n   s y s t e m  shown i n   F i g u r e  1 (a )  
wi th  N = 8 

131 



0 5 
3 

2.0 

1 -5 

1.0 

0.5 

r 
LETTER o b c d e f g h i j 

5 0 0.1 0.2 0.3 0.5 I 2 5 IO a> 

a, - 

-I t ,  !- 

1 2 3 4 

TIME RATIOI t,/T 
Figure 84.-Peak displacement  response  to  an  acceleration 

initial-peak  saw-tooth  pulse  input  for  the 
isolation  system  shown  in  Figure  l(a) 
with N = 24 
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Figure 85.-Peak displacement  response  to an accelerat ion  ini t ia l -peak 
saw-tooth  pulse  input  for t h e  isolation  system shown i n  
F igure   l (a )   wi th  N = 


